### 3) Lengths, areas and volumes of similar shapes

##### Ratio of areas

The **lengths** of the larger square are 3 times the lengths of the smaller square. The **scale factor** is 3. The **area** of the smaller square is 4 cm^{2}. The area of the larger square is 36 cm^{2}.

The area of the larger square is 9 times larger than the area of the smaller square.

The ratio of areas is . This is .

If the scale factor is , the ratio of areas is .

##### Example 1

These two clocks are similar. The area of the small clock face is approximately 28.3 cm^{2}. Calculate the area of the face of the larger clock.

The scale factor =

The ratio of areas is =

The area of the large clock face is approximately 452.8 cm^{2}.

##### Example 2

These two pieces of paper are similar. The area of an A3 piece of paper is double the area of an A4 piece of paper. Calculate the width of the smaller piece of paper.

The ratio of areas is . The ratio of lengths is

In this case, the scale factor is .

##### Ratio of volumes

The lengths of the larger square are 4 times the lengths of the smaller square.The scale factor is 4. The **volume** of the smaller cube is 8 cm^{3}. The volume of the larger cube is 512 cm^{3}.

The ratio of volumes is . This is

If the scale factor is , the ratio of volumes .

##### Example

These two tins of soup are similar. Calculate the diameter of the larger tin of soup.

The ratio of volumes is 125 : 500 = 1 : 4

The ratio of lengths is

The scale factor is:

**< Previous | 1 | 2 | 3 | **

**4**

**| Next >**